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Asymptotic similarity states at large Reynolds numbers and small Rossby num-
bers in rotating homogeneous turbulence are investigated using the database ob-

tained from large-eddy simulations of the incompressible Navier-Stokes equations.
Previous work has shown that the turbulence kinetic energy and integral length

scales are accurately described by simple scaling laws based on the low wavenumber

part of the three-dimensional energy spectrum (Squires et al. 1994). The primary
interest of the present study is to search for spectrum similarity in the asymptotic

state. Four independent energy spectra are defined. It is shown that rescaling of

these energy spectra in the asymptotic regime will collapse three out of the four

spectra. The spectrum which does not collapse is a function only of the vertical
wavenumber and corresponds to two-component motions in the plane normal to

the rotation axis. Detailed investigation of the cause of this anomalous behavior

reveals the existence of a strong reverse cascade of energy from small-to-large scales

of the two-dimensional, two-component motions. This feature of the rotating flow

is presumably linked to the lack of a complete similarity state, though further study
of this issue is required.

1. Introduction

Solid-body rotation of initially isotropic turbulence represents the most basic tur-
bulent flow whose structure is altered by system rotation but without the complicat-

ing effects introduced by mean strains or flow inhomogeneities. Squires, Chasnov,
Mansour & Cambon (1994) (referred to as SCMC throughout this manuscript) ex-

amined the long-time, asymptotic evolution of rotating homogeneous turbulence at

large Reynolds numbers and small Rossby numbers. They found that the kinetic

energy decay exponent was reduced by approximately a factor of two relative to its
value in non-rotating turbulence and was independent of the rotation rate. SCMC

also found that the integral length scales undergo power-law growth and that the
evolution of both the kinetic energy and length scales in the asymptotic regime is

accurately described using simple scaling laws based on the invariants of the low
wavenumber part of the initial energy spectrum.
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The scaling laws of the kinetic energy and integral length scales deduced by

SCMC suggest the existence of an asymptotic similarity state in rotating homoge-
neous turbulence. Since a similarity state permits prediction of the flow evolution

using a simple rescaling of the statistics, existence of asymptotic similarity states
enables prediction of the ultimate statistical evolution of the flow without detailed

knowledge of non-linear transfer processes. Similarity states thus imply a certain

universal character to a flow which may ultimately simplify modeling of complex
turbulent flows at high Reynolds numbers.

The objective of the present work, therefore, is to search an asymptotic similarity
state for the energy spectra. In §2 an overview of the LES database used in this

study is summarized. Also presented in §2 is the time development of the kinetic

energy power-law exponent, integral length scales, and asymptotic scaling laws ob-
tained from both dimensional analysis and the simulation database. The reader is

referred to Squires et al. (1993, 1994) for a more complete discussion. In §3 the
asymptotic spectrum similarity is analyzed and tested using the LES database.

2. Database overview and scaling laws

2.1 Database overview

The database used in the present study was obtained using large-eddy simulation
of the incompressible Navier-Stokes equations in a rotating frame of reference. The

use of a large-eddy simulation with zero molecular viscosity ensures that the flows

considered are nominally at infinite Reynolds numbers. For purposes of discussion

the vertical (x3) axis is taken along the axis of rotation. The governing equa-

tions were solved using the pseudo-spectral method developed by Rogallo (1981).
Subgrid-scale motions were parameterized using a spectral-eddy viscosity modified

for system rotation (Kraichnan 1976, Chollet & Lesieur 1981, Aupoix 1984). Cal-
culations were performed from isotropic Gaussian initial conditions using an initial
energy spectrum of the form

E(k,O) = _C0_-_ _ exp -2 s , (1)

where Cs is given by
S½(s4-1)

Cs = i_ 1 • 3-::_:(_- 1) (2)

and kp is the wavenumber at which the initial energy spectrum is maximum. SCMC

performed simulations with s = 2 and s = 4, corresponding to the initial energy
spectrum having a low wavenumber form proportional to either k 2 or k4.

Simulations were performed using resolutions of 128 × 128 × 512 on a computa-
tional domain which is four times longer along the rotation axis than in the other

directions. This yields an isotropic grip in physical space, but permits the de-

velopment of large-scale anisotropies without compromising the usefulness of the
computational results. The maximum wavenumber in each of the three coordinate
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FIGURE 1. Time development of the power-law exponent of (U 2) in rotating

turbulence, k2 spectrum: o ..... o _ = 0; .... 52 = 0.5; ........ _ = 1.0. k 4 spectrum:

----- _ = 0;----- _ = 0.5; _ _ = 1.0.

directions was 95, the initial root-mean-square velocity fluctuation u0 was 1/2, and
the wavenumber at which the initial spectrum was initially maximum, kp, was 75.

For each spectrum type, i.e., low wavenumber part proportional to k 2 or k 4, sim-
ulations results are available for three rotation rates, _ = 0, 0.5, and 1.0. The

flows were evolved over a sufficiently long period so that the effects of rotation on

the flow dynamics were clearly evident, and the kinetic energy decay and integral

length-scale growth approximated power-law forms. This corresponds to an evolu-
tion of the flow to low Rossby numbers, where the Rossby number is a measure of

the relative strength of inertial forces to Coriolis forces.

l_._ Statistical evolution and scaling laws

The effect of rotation on the evolution of the turbulence kinetic energy ((u 2)) can

be illustrated through examination of the power-law exponent, n (in (u 2) o¢ t-",

see Fig. 1). In Fig. 1, the time axis is made dimensionless using the eddy turnover
time in the initial field

7(0) = (3)

where Lu(t) is the velocity integral scale at time t defined as

L,(t) = _ f° k-'E(k't)dk
2 Jo E(k,t)dk

(4)

Power-law exponents have been plotted for each initial spectrum type and rotation
rate used in the calculations. It is evident from Fig. 1 that following an initial

transient the power-law exponent becomes independent of time. Comparison of the

power-law exponents for both initial spectrum types demonstrates the reduction
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in the decay rate of kinetic energy in rotating turbulence. It is also clear from

Fig. 1 that in the asymptotic regime the power-law exponent of the kinetic energy
is independent of the rotation rate provided the rotation is non-zero. The value of

the exponent depends only on the form of the initial energy spectrum.

It is possible to derive the appropriate asymptotic scalings of (u 2) for non-rotating

turbulence using dimensional analysis (e.g., see Chasnov 1994). For the rotating
flow, assuming that non-linear triadic interactions are correlated over a time scale

directly proportional to a, SCMC showed that the asymptotic scalings for the
kinetic energy are

(u 2) _ B_ot-}(at) _ (k 2 spectrum) (5)

(u 2) cx//z t-7 (at) _ (k 4 spectrum). (6)

For the k 2 spectrum B0 is invarimlt while for the k a initial conditions B2 is time

dependent. However, the time dependence of B2 is weak relative to the overall

turbulence decay. It is assumed invariant for the purposes of developing asymptotic

scalings. The scaling laws (5) and (6) predict that in rotating turbulence the kinetic

energy decay exponent is reduced by a factor of two, relative to its value in the non-

rotating flow. As shown by Fig. 1, simulation results agree with these predictions.

SCMC also examined the development of the integral length scales. These length
scales are obtained from integration of the two-point correlation function

1/- (uo(x)uo(x+re ))dr , (7)

where eg is the unit vector in the _ direction, and a, fl = 1, 2, or 3. The length scale

L_o;Z measures the correlation between the a velocity components with separation

in the _ direction. SCMC examined the evolution of five length scales. In the

horizontal plane these integral scales are

1 1 1

Lhl =  (L 1,1 + L22,2), Zh2 =  (Lll,2 + L22, ), Lh3 =  (L33,1 + L33, ). (8)

The integral scale Lhl measures the horizontal correlation of longitudinal horizontal

velocities, Lh2 the horizontal correlation of lateral horizontal velocities, and Laa the

horizontal correlation of vertical velocities. For vertical correlations (along the axis
of rotation) there are two independent integral scales

1

Lvl -_ _(Lll,a -{-L22,a), Lv2 = Zaa,a , (9)

where L_I measures the vertical correlation of horizontal velocities and L_2 the
vertical correlation of vertical velocities.

Shown in Fig. 2 is the time development of the integral scales from SCMC for the

highest rotation rate used with each initial condition type. Also shown for reference

is the slope corresponding to the asymptotic growth rate in non-rotating isotropic
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FIGURE 2. Time development of integral length scales in rotating turbulence,

l'/ -- 1. Asymptotic growth rate in non-rotating turbulence also shown in lower

portion of figure. -- Lhl; .... Lh2; ........ Lha; ----- Lvl; --'-- Lv2. (a) k 2

spectrum; (b) k 4 spectrum.

turbulence. It is clear from Fig. 2 that L_I grows much more rapidly than all other

integral scales. Also, the growth of the other four integral scales appear to be slightly

suppressed relative to the non-rotating case. In addition, the simulations provide

evidence that all the integral length scales exhibit power-law growth asymptotically

and, with the important exception of Lvl, the power-law exponents axe all the same.

Thus, in the horizontal plane there appears to be a single independent length scale,

which we denote generically as Lh, whereas there exists two independent length

scales in the vertical direction, namely L_l and L_2. SCMC further demonstrated



388 K. D. Squires, J. R. Chasnov _ 3[. N. Mansour

that the evolution of the integral scales from two simulations of a k s spectrum at

different rotation rates ft could be collapsed according to the asymptotic scaling
laws

(10)
while for the k* spectrum a collapse was achieved using the scaling laws

Lh°cB:t'_(f_t) -_, Lv, o_B_t_(f_t) _, Lv2o_B_t_(f_t) -_ (11)

3. Asymptotic spectrum similarity

Power-law behavior of both the kinetic energy (Eqs. 5 and 6) and integral length
scales (Eqs. 10 and 11) suggest the existence of energy spectra which are asymptot-

ically similar, i.e., the time- and rotation-dependent spectra collapse by appropri-
ately rescaling the wavenumber and spectral density axes. For brevity, we consider

here only our results for the k 2 initial conditions. More complete results will be
presented in a future publication.

As the first obvious candidate for an asymptotically similar spectrum, we define
an axisymmetric energy spectrum as a function of k± and ks as

• (k±, k3,t) = t)u,(k, t)*), (12)
where

ki = (k_ + k_) ½ (13)

is the horizontal wavenumber perpendicular to the rotation axis, ui(k) is the Fourier

transform of a periodic velocity field ui(x), * denotes the complex conjugate, and
the angular brackets used in (12) denote an average over a horizontal ring in three-

dimensional wavespace with center located at a fixed value of ka. The relationship
between the spectrum in (12) and the kinetic energy per unit mass of the fluid is
given by

(u 2) = dk3 dk±_(k±, ka, t). (14)

An attempt to construct a similarity form directly for the spectrum _(k±, ka, t)
is impeded by the existence of two distinct vertical integral scales in the rotating

flow. The choice of an appropriate length scale for rescaling ka is thus ambiguous,

making it unlikely that the full spectrum ¢(k±, ka, t) will be asymptotically similar.
We may, however, integrate out the vertical wavenumber from the spectrum defined

in (12) to construct an energy spectrum which is a function only of the horizontal
wavenumber:

Fo±(kx,t) = dk3 (kx, k3,t). (15)

The simulation results have shown that there is only a single horizontal length scale
(10) which may be used to scale the horizontal wavenumber k±. This allows us to

propose the following general form for the similarity state of the spectrum _±:

_±(k_, t) = (U2)Lh_±(Lhk±). (16)
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FIGURE 3. Time development of _±(k±).

unscaled; (b) scaled.

f_ =0.5;_ f_= 1.0. (a)

Making use of the known asymptotic behavior of the kinetic energy (5) and integral

scales (10), the similarity state (16) is given explicitly as

_±(k±,t) = Biot-{(ftt)i_2±('ka.), "k± = B½oti(f_t)-}k±. (17)

Shown in Fig. 3 are the unsealed and scaled spectra _±(k±,t) and _±(k±,t)

after the flows have evolved sufficiently to be considered asymptotic in the sense that

rotation effects are important (low Rossby numbers) and the statistics follow power-

law forms. Spectra from calculations using both non-zero rotation rates have been
included in the figures. While the decay with increasing time and the dependence

on rotation rate is evident in Fig. 3a, the scaled spectra and wavenumbers (17)

in Fig. 3b show a remarkable collapse, indicating that _ ± is independent of both
time and rotation rate. The results shown in Fig. 3b thus confirm the similarity

state given by (17). This is a significant result since we have succeeded in reducing
the number of independent variables in the problem from four, (kx, t, f_, and B0),

where B0 represents the effect of initial conditions, to simply one, (kx).

We must still confront the difficulty of finding similarity spectra which are func-
tions of the vertical wavenumber k3. We know from the LES results that two

vertical length scales exist, one associated with the horizontal velocities and the
other with the vertical velocities. This suggests splitting the energy spectrum into

two spectra, each separately related to the horizontal or vertical velocities. A sim-

ple splitting, however, does not take into account the constraint imposed by the
continuity equation on the flow field. Rather, we proceed to define spectra (Herring

1974) by first projecting the Fourier components of the velocity field onto two unit
vectors perpendicular to k (the velocity component parallel to k is zero by virtue

of the continuity equation):

ui(k) = ¢l(k)el')(k) + ¢_(k)el2)(k), (lS)
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where

k x n k x e(_)(k) (19)e¢l)(k) = Ik x t_l' e_2)(k)= Ik x e¢l)(k)l "

We note that the field _1 (k) consists only of horizontal velocity fluctuations, whereas
the field ¢2(k) contains both horizontal and vertical fluctuations. We then use the

scalar fields el(k) and ¢2(k) to define energy spectra in analogy to (12):

• ")(k±, ks, t) = _k_(¢l(k, 0¢1 (k, t)'), (20)

q(2)(ka_, ks, t) = rk±(¢2(k, t),2(k, t)'), (21)

where we have now separated the energy spectrum into two spectra:

q(k±, ks, t) = qO)(ka., ks, t) + qC2)(k±, ks, t). (22)

The significance of this separation can be seen by expressing the integral length
scales Lvl and Lv2 of (9) in terms of qO) and q(2), i.e.,

Lvl = (u_+ul) dk±qO)(k±'O)' (23)

and

_r f0°¢Lv2 = _ dka.q(2)(ka.,O). (24)

The LES resultsshow thatthe horizontaland verticalmean-square velocityfluctu-

ationsdecay asymptotically with the same power-law form, so that (23) and (24)
serve the hopeful purpose of matching the two independent vertical integral scales
to the two different spectra.

In analogy to the similarity form given in (16), we now postulate the following
general similarity states of the form

qO)(k±,ks,t) = (¢_)l_l[_O)(l_ka.,lrks), (25a)

ffZ(Z)(k±,ks,t) 2 h _^(2) I,= (q}2)1212q (I2 k.t_, 12ks), (25b)

where (¢_), I_, l]', and (¢_), 12h, l_' are the mean-square fluctuations and horizontal

and vertical integral scales associated with the q(1) and _(2) spectra, respectively.

The relations between the mean-square fluctuations, the integral scales, and the
spectra are given for reference by

(¢_,2) = dks dk± _O'2)(kj., ks, O, (26)

and

dk.L_20'Z)(kj_, O, t), 1/_ °° foC_ @(x'2)(k±,k3, t)1_,2 = (71,2) _ dk3 k±

(27)
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We have computed the amplitudes and integral scales given by (26) and (27) from
the LES database. The mean-square values (q_/ and (¢_) decay asymptotically

at the same rate as the total kinetic energy per unit mass as given in (5), and the

horizontal integral scales 1_ and l_ and vertical integral scales 1l' and 1_ grow asymp-

totically as Lh (for both horizontal integral scales) and Lva and Lv2, respectively,

as given by (10).
Although the similarity states proposed in (25) appear to be reasonable, a closer

examination reveals a further problem. We recall that the asymptotic form of the

energy and integral scales were constructed on the basis of the invariant B0, related
to the form of the energy spectrum near zero wavenumber. Assuming a flow field

starting from isotropic initial conditions (as in our simulations), the forms of the

spectra _(a)(k±, k3,t) and _(2)(k±, k3,t) near k = 0 are

II/(1)(kl, k3, t) -- 27rkx(Bo + O(k)),

• (2)(k±, ks,t) = 2_rk±(B0 + O(k)), (28)

where O(k) represents terms which vanish as k = (k[ + k_) 1/2 --, 0 and B0 is

independent of time. Near k = 0 the similarity forms of the spectra must necessarily

be

_(')(l_k±,lrkz ) ._ 2rlhlk±, _(2)(l_k±,l_kz) ._ 21rl_k± ; (29)

and substituting (28) and (29) into (25) yields

B0 o¢ (¢_)(1_)211', Bo e¢ (¢2_)(I_)21_. (30)

Eq. (30) is an important result in that it provides two additional constraints on
the allowed form of an asymptotic similarity state based on the invariant B0. The

second constraint of (30) can be seen to be satisfied by the LES results, where

(¢22)cxB_ot__(_t)_, lh2cxB_t](_lt)-_, 12v_Bttg(f_t) -i!, s (31)

However, the first constraint of (30) is widely violated by the LES results due to

the rapid growth in the vertical integral scale:

(¢2)_B_ot-_(f_t)] ' lh, ccB_ot_(Dt)-_ ' l_B_ot](ftt)],, (32)

so that

The similarity state in (25a) constructed for 0(1)(k±, k3, t) must thus be in error.

However, the similarity state in (25b) constructed for q_(2)(k±, ka,t) may possibly

be correct in so far as the constraint given by the second of (30) is satisfied.
To test the correctness of the similarity state for O(2)(ka_, k3,t), we isolate the

troublesome ks dependence of the spectrum by integrating over k± to obtain the

(usual) one-dimensional spectrum
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_0 °°
• (2)(k3, t) = dk±_(2)(k±, k3, t) ;

and the corresponding similarity state is postulated to be

_(2)/L t) 2 A3 _3, = (¢2)12_±(12k3),

which using (31), may be written explicitly as

_2)(k3,t ) = B_o t-](flt)_ _2)('k3) ,

(33)

(34)

Shown in Fig. 4 are the unscaled spectra _2)(k3,t ) and the scaled spectra

_(2)rZ t) obtained from (35). As before, results for both non-zero rotation rates3 Lr_3_

are shown in the figure. In Fig. 4a the spectra at different times and rotation rates

"k3 = B_oti(flt)-½k3. (35)
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for k3 = 0 and f_ = 1.0. Increasing time is from

behavior as k± --* 0 (Eqn. 29).

Time development of _(1}(k.l., k3) (Fig. 6a) and _(2)(k±, k3) (Fig 6b)
to _ ; ........ asymptotic

are clearly distinguishable whereas in Fig. 4b the spectra _2)(k3, t) for the times

plotted and both fl collapse onto a single curve. Together with the previous results
of Fig. 3, we have thus confirmed the complete similarity state of 02(2)(k±, k3,t)

given by (25b).

For comparison, the troublesome one-dimensional spectrum _O)(k3,t) and the
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scaled spectrum corresponding to the assumed similarity form given by (25a) are
shown in Fig. 5. As anticipated from the inconsistency of the assumed similarity

form with the constraint given by the first of (30), the rescaling shown in Fig. 5b

does not collapse _2(31)(k3) onto a single curve.

Thus we have demonstrated spectral similarity for three out of four spectra,

namely _ _ ) (k ±, t ), _2_ ) (k ±, t ), and "_3"(2)eL_'_3,t) are asymptotically similar, whereas

_I'_l)(k3, t) is decidedly not.

Further evidence of the anomalous asymptotic behavior of k_ 1) is provided in

Fig. 6. Shown in the figure, for f_ = 1.0, are _(1) (Fig. 6a) and _(2) (Fig. 6b)
as a function of k± for k3 = 0. From (28), the spectra in these figures should
follow the asymptotic form _(1,2)(k±, k3 = O,t) ._ 27rkiBo as k± ---*0. Considering

Fig. 6b, k_(2)(k±, 0, t) decays as one would expect from a decaying three-dimensional

turbulence. The energy at larger values of k± decay more rapidly than the energy
at smaller values, and consequently the peak of the spectrum systematically moves

to lower wavenumbers. The invariance of the form of the spectrum as k j_ _ 0 is

respected. The spectrum _(1)(k±,O,t) shown in Fig. 6a, however, behaves much

differently. A strong increase in the energy at small values of ka. is clearly evident.
The invariance of the spectrum as k± ---* 0 is a rigorous result, yet appears to

be irrelevant to the time-development of this spectrum. It is important to note

that the spectrum _(1)(k±,0, t) corresponds to two-dimensional, two-component

motions, and what we are observing in Fig. 6a is apparently a reverse cascade of
energy from small to large scales, well-known within the context of two-dimensional

turbulence. The existence of a reverse cascade may be the reason why a similarity

state based on the invariance of the low wavenumber coefficient does not develop
for the _(1) spectrum. The establishment of a two-dimensional reverse cascade

is an important feature of three-dimensional turbulence in a rotating frame, and
obviously requires a deeper understanding than we have achieved thus far. Other

recent investigations (Bartello et al. 1994; Hossain 1994) have also confronted this

very question, although from a different perspective than the present work.

Finally, the strong reverse cascade of energy of the two-dimensional, two-compo-

nent motions has interesting implications as to the asymptotic structural evolution

of rotating homogeneous turbulence. The reader is referred to Cambon, Mansour &
Squires (1994) (contained in this proceedings) for further discussion of these issues.
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